Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica

نویسندگان

  • Etienne Talbot
  • Rodrigue Lardé
  • Philippe Pareige
  • Larysa Khomenkova
  • Khalil Hijazi
  • Fabrice Gourbilleau
چکیده

: Photoluminescence spectroscopy and atom probe tomography were used to explore the optical activity and microstructure of Er3+-doped Si-rich SiO2 thin films fabricated by radio-frequency magnetron sputtering. The effect of post-fabrication annealing treatment on the properties of the films was investigated. The evolution of the nanoscale structure upon an annealing treatment was found to control the interrelation between the radiative recombination of the carriers via Si clusters and via 4f shell transitions in Er3+ ions. The most efficient 1.53-μm Er3+ photoluminescence was observed from the films submitted to low-temperature treatment ranging from 600°C to 900°C. An annealing treatment at 1,100°C, used often to form Si nanocrystallites, favors an intense emission in visible spectral range with the maximum peak at about 740 nm. Along with this, a drastic decrease of 1.53-μm Er3+ photoluminescence emission was detected. The atom probe results demonstrated that the clustering of Er3+ ions upon such high-temperature annealing treatment was the main reason. The diffusion parameters of Si and Er3+ ions as well as a chemical composition of different clusters were also obtained. The films annealed at 1,100°C contain pure spherical Si nanocrystallites, ErSi3O6 clusters, and free Er3+ ions embedded in SiO2 host. The mean size and the density of Si nanocrystallites were found to be 1.3± 0.3 nm and (3.1± 0.2)×1018 Si nanocrystallites·cm-3, respectively. The density of ErSi3O6 clusters was estimated to be (2.0± 0.2)×1018 clusters·cm-3, keeping about 30% of the total Er3+ amount. These Er-rich clusters had a mean radius of about 1.5 nm and demonstrated preferable formation in the vicinity of Si nanocrystallites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the sensitized Er3+ emission by silicon nanoclusters and luminescence centers in silicon-rich silica

The structural and optical properties of erbium-doped silicon-rich silica samples containing different Si concentrations are studied. Intense photoluminescence (PL) from luminescence centers (LCs) and silicon nanoclusters (Si NCs), which evolves with annealing temperatures, is obtained. By modulating the silicon concentrations in samples, the main sensitizers of Er(3+) ions can be tuned from Si...

متن کامل

Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering

We have fabricated a series of thin (~50 nm) erbium-doped (by ion implantation) silicon-rich oxide films in the configuration that mitigates previously proposed mechanisms for loss of light emission capability of erbium ions. By combining the methods of optical, structural and electrical analysis, we identify the erbium ion clustering as a driving mechanism to low optical performance of this ma...

متن کامل

On the origin of emission and thermal quenching of SRSO:Er3+ films grown by ECR-PECVD

Silicon nanocrystals embedded in a silicon-rich silicon oxide matrix doped with Er3+ ions have been fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Indirect excitation of erbium photoluminescence via silicon nanocrystals has been investigated. Temperature quenching of the photoluminescence originating from the silicon nanocrystals and the erbium ions has be...

متن کامل

Photoluminescence of Erbium-doped Silica-based Waveguide Film via Flame Hydrolysis Deposition and Aerosol Doping

Silica based waveguides on Si fabricated by flame hydrolysis deposition were doped with erbium ions using an aerosol doping technique, and co-doped with GeO2, P2O5 and B2O3. Erbium doping levels in the films were dependent on the nebulized solution concentration and delivery rate of the aerosol to the torch. The erbium solution concentration was varied from 4 to 8 wt%. The refractive index was ...

متن کامل

Mo-pecvd (metal-organic Plasma Enhanced Chemical Vapour Deposition) of Erbium-doped Hydrogenated and Deuterated Amorphous Carbon

Erbium (Er) ion has been widely used in silica fiber-based active photonic devices, given its characteristic emission around 1.5 μm. Hydrogenated and deuterated amorphous carbon (a-C:H and a-C:D, respectively), thin film materials offering tailorable opto-electronic properties, have not been explored thoroughly as host materials for Er. The objective of this research is to study the potential s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013